Лекция 6
ГЛАВА 6. Коллекции и массивы
Что мы расскажем:
· Массивы
· Коллекции
· Фильтр и применение
Одна из реальных аналогий коллекций - это кошелек или мешочек, наполненный различными вещами, такими как монеты. Монеты будут предметом, а сам мешочек - коллекцией. Итак, основываясь на этой аналогии, мы можем сказать, что коллекция - это своего рода контейнер, который может содержать ноль, один или несколько элементов. Возможно, вы помните, что у нас уже есть нечто подобное - массив. Массив точно соответствует этому описанию, поскольку может содержать ноль, один или несколько элементов внутри. Если это так, действительно ли нам нужно узнавать о других контейнерах? В этой главе мы рассмотрим массивы, коллекции и некоторые функции в структуре коллекций Kotlin.
Массивы
Переходя с Java, вам нужно немного отступить, прежде чем работать с массивами Kotlin. В Java это особые типы; у них есть первоклассная поддержка на языковом уровне. В Kotlin массивы - это просто типы; более конкретно, это параметризованные типы. Если бы вы хотели создать массив строк, вы могли бы подумать, что следующий фрагмент может работать:
var arr = {"1", "2", "3", "4", "5"}
Этот код не имеет смысла для Kotlin - он не рассматривает массивы как особый тип. Если мы хотим создать массив строк, как в примере, мы можем сделать это двумя способами.
В Kotlin есть некоторые библиотечные функции, такие как arrayOf, emptyArray и arrayOfNulls, которые мы можем использовать для облегчения создания массивов. В листинге 6-1 показано, как создать и заполнить массив с помощью функции emptyArray.
Листинг 6-1. Использование функции emptyArray
var arr = emptyArray <String> ();
arr + = "1"
arr + = "2"
arr + = "3"
arr + = "4"
arr + = "5"

Добавление элементов в массив Kotlin не так многословно, как в Java, но не обманывайте себя красивым синтаксисом. На момент создания массивы все еще имеют фиксированный размер, даже здесь, в Котлине.
Добавление элемента в массив выполняется путем создания нового массива, который больше старого массива, а затем копирования элементов старого массива в новый. Итак, как видите, это все еще дорогостоящая операция, даже если у нас есть приятный слащавый синтаксис. В листинге 6-2 показано, как использовать функцию arrayOfNulls для того же.
Листинг 6-2. Использование функции arrayOfNulls
var arr2 = arrayOfNulls <String> (2)
arr2.set (0, "1")
arr2.set (1, "2")

Целочисленный аргумент функции arrayOfNulls - это размер создаваемого массива. В отличие от пустого массива в листинге 6-1, эта функция дает вам возможность указать размер массива, который вы собираетесь создать. Кстати, вы все еще можете использовать синтаксис скобок для массивов Kotlin, методы get и set массивов - это просто вспомогательные функции. В листинге 6-3 показано использование синтаксиса скобок вместе с новыми функциями get и set.
Листинг 6-3. Получить и установить методы массива
var arr2 = arrayOfNulls <String> (2)
// arr2.set (0, "1")
// arr2.set (1, "2")
arr2 [0] = "1"
arr2 [1] = "2"
println (arr2 [0]) // то же, что и arr2.get (0)
println (arr2 [1])

Другой способ создать массив - использовать функцию arrayOf. В листинге 6-4 показан фрагмент.
Листинг 6-4. Использование функции arrayOf
var arr4 = arrayOf ("1", "2", "3")
Эта функция, вероятно, является наиболее близким по синтаксису к литералу массива Java, и, вероятно, поэтому она чаще всего используется программистами. Вы можете передать в функцию список значений, разделенных запятыми, и она автоматически заполнит вновь созданный массив.
Наконец, массивы можно создавать с помощью конструктора Array. Конструктор принимает два аргумента, первый из которых - размер создаваемого массива, а второй аргумент - лямбда-функция, которая может возвращать начальное значение каждого элемента.
Листинг 6-5. Использование конструктора массива
var arr3 = Array <String> (5, {it.toString ()})
В большинстве ситуаций, когда вам нужно работать с массивами чисел, достаточно использовать класс Array. Однако вам нужно помнить, что, например, Array <Int> представляет целые числа как объекты типа Integer, а не как целочисленные примитивы. Итак, если вам нужно выжать немного больше производительности из вашего кода и действительно использовать примитивные числовые типы, вы можете использовать специализированные типы массивов Kotlin.
Специализированные классы, такие как ByteArray, IntArray, ShortArray и LongArray, представляют массивы примитивных типов (например, в Java). Эти типы позволяют работать с массивами без накладных расходов на упаковку и распаковку массивов, которые используют объектные аналоги числовых примитивов. Эти специализированные типы фактически не наследуются от Array, но имеют одинаковые наборы методов и свойств. Кроме того, у них есть специализированные заводские функции, которые упрощают работу. См. пример в листинге 6-6.
Листинг 6-6. Специальные типы массивов
var z = intArrayOf (1,2,3)
var y = longArrayOf (1,2,3)
var x = byteArrayOf (1,2,3)
var w = shortArrayOf (1,2,3)
println (Arrays.toString (z))
println (Arrays.toString (у))
println (Arrays.toString (х))
println (Arrays.toString (w))

Я использовал функцию Arrays.toString (), чтобы при печати содержимого мы получали удобочитаемый вывод. Если вы просто напечатаете массив без вспомогательной функции, он будет выглядеть как тарабарщина, например
println (z) // выводит [Ljava.lang.String; @ 6ad5c04e
Обход массивов можно выполнить двумя способами. Во-первых, вы можете использовать надежный цикл for, как показано в листинге 6-7.
Листинг 6-7. Использование цикла for для обработки каждого элемента массива
for (i in z) {
 println ("$ i zee")
}

Или вы можете использовать функцию forEach, например.
y.forEach {i -> println ("$ i zee")}
Если вам нужно отслеживать и индекс, и элемент массива, вы можете использовать функцию forEachIndexed, как показано в листинге 6-8.
Листинг 6-8. Использование функции forEachIndexed для обхода массива
x.forEachIndexed { index, element ->
 	println ("$ index: $ element")
}

Прежде чем мы оставим тему массивов, мы должны помнить, что, если вы не хотите дублировать содержимое массива, вам придется написать эту программную логику самостоятельно. Уникальность содержимого - это не то, что могут гарантировать массивы.
Хотя массивы очень полезны во многих ситуациях, они имеют ограничения, как вы видели в предыдущих обсуждениях. Добавление новых элементов в массивы при удобном синтаксисе по-прежнему является дорогостоящей операцией. Вы не можете распечатать их без использования вспомогательных функций (хотя это не имеет большого значения). Наконец, у него нет возможности ограничивать элементы (например, обеспечивать уникальность). В некоторых ситуациях эти ограничения могут не иметь большого значения, но в некоторых ситуациях они могут оказаться решающими. Итак, когда мы подходим к ограничениям массивов, мы попадаем на территорию Коллекций - они помогают нам справиться с такими ограничениями.
Доступность фреймворка коллекций как части комплекта разработки может не иметь для вас такого большого значения. В конце концов, вы пришли из Java, и у него впечатляющая структура коллекций. Но вам нужно помнить, что до таких языков, как Java, C #, Python и т. д., не было фреймворков коллекций. Программисты должны были написать свою собственную программную логику, чтобы иметь дело с такими проблемами, как изменяемые размеры массивов, доступ по принципу «последний пришел - первый ушел», хеш-таблицы или хеш-карты и т. д. Это не простые проблемы с хранением, а, скорее, проблемы со структурой данных. Самостоятельно реализовать эту логику структуры данных довольно сложно; есть много крайних случаев, которые нужно исправить. Хотя все еще могут быть законные причины для реализации ваших собственных структур данных (вероятно, из соображений производительности), в большинстве случаев вам лучше использовать встроенную структуру коллекций.
[image: ]
Рисунок 6-1. Структура коллекций
На рисунке 6-1 показана иерархия фреймворка коллекций Kotlin. На вершине иерархии находятся интерфейсы Iterable и MutableIterable - они являются родителями всех классов коллекций, с которыми мы будем работать. Как вы могли заметить на диаграмме, каждая коллекция Java имеет два представления в Kotlin: доступное только для чтения и изменяемое. Изменяемые интерфейсы отображаются непосредственно на интерфейсы Java, в то время как неизменяемые интерфейсы не имеют всех методов-мутаторов их изменяемых аналогов.

Коллекции
Коллекции Kotlin на самом деле являются прямыми экземплярами коллекций в JDK. Никакого преобразования упаковки не происходит. Итак, если вы не экономили на изучении коллекций, когда вы были на Java, это, безусловно, пригодится сейчас. Хотя Kotlin не определял свой собственный код коллекций, он добавил в фреймворк довольно много вспомогательных функций, что является долгожданным дополнением, поскольку оно упрощает работу с коллекциями.
Прежде чем мы перейдем к примерам кода и другим деталям, нужно сказать кое-что о том, почему это называется фреймворком коллекций. Причина, по которой это называется фреймворком, заключается в том, что структуры данных сами по себе очень разнообразны. Некоторые из них накладывают ограничения на то, как мы проходим коллекцию; они устанавливают определенный порядок обхода.
Некоторые коллекции ограничивают уникальность элементов данных; они не позволят вам ставить дубликаты. А некоторые из них позволяют нам работать с коллекциями попарно - например, в словарной статье у вас будет ключ с соответствующим значением.
В Kotlin нет специального синтаксиса для создания списков или наборов, но он предоставляет нам библиотечные функции для облегчения создания. В таблице 6-1 перечислены некоторые из них.
Таблица 6-1. Коллекции Kotlin и их функции создания
	Коллекция
	Только для чтения
	Mutable

	list
	listOf
	mutableListOf, arrayListOf

	set
	
	setOf mutableSetOf, hashSetOf, connectedSetOf, sortedSetOf

	map
	mapOf
	mutableMapOf, hashMapOf, connectedMapOf, sortedMapOf



Примечание. Хотя класс карты не наследуется ни от Iterable, ни от MutableIterable (рис. 6-1), он все еще представлен в Kotlin в виде двух различных версий: изменяемой и неизменяемой.
Списки
Список - это тип коллекции, у которой есть определенный порядок итерации. Это означает, что, если мы добавим в список пару элементов, а затем пройдемся по нему, элементы появятся в очень определенном порядке - это порядок, в котором они были добавлены или вставлены. Они появятся не в случайном порядке или в обратной хронологии, а именно в той последовательности, в которой они были добавлены. Это означает, что каждый элемент в списке имеет порядок размещения, порядковый номер, который указывает его порядковую позицию. Первый добавляемый элемент будет иметь индекс 0, второй - 1, третий - 2 и так далее. Итак, как и массив, он отсчитывается от нуля. В листинге 6-9 показано базовое использование списка.
Листинг 6-9. Основное использование списков
fun main (args: Array <String>) {
 val fruit = mutableListOf <String> ("Яблоко") ➊
 fruit.add («Апельсин») ➋
 fruit.add (1, «Банан») ➌
 fruit.add ("Гуава")
 println (fruit) // выводит [яблоко, банан, апельсин, гуава]
 fruit.remove («Гуава») ➍
 fruit.removeAt (2) ➎
 println (fruit.first () == "Клубника") ➏
 println (fruit.last () == "Банан") ➐
 println (fruit) // выводит [Apple, Banana]
}

➊ Создает изменяемый список, функция-конструктор позволяет нам передавать переменный аргумент, который будет использоваться для заполнения списка. В этом случае мы передали только один аргумент - мы могли передать больше.
➋ Добавляет элемент в список; «Апельсин» появится сразу после «Apple», поскольку мы не указали порядковый номер для вставки.
➌ Добавляет еще один элемент в список, но на этот раз мы сказали ему, куда именно поместить элемент. Он удаляет «оранжевый» элемент, а затем вставляет сам себя. Естественно, порядковый номер или индекс всех элементов, следующих за ним, изменится.
➍ Вы можете удалять элементы по имени. Когда элемент удаляется, его место занимает элемент рядом с ним. Порядковый номер всех элементов, следующих за ним, соответственно изменится.
➎ Вы также можете удалить элементы, указав их позицию в списке.
➏ Вы можете спросить, равен ли элемент first () «Strawberries».
➐ Вы также можете проверить, равен ли элемент last () «Банану».
Наборы
Наборы очень похожи на списки как по работе, так и по структуре, поэтому все, что мы узнали о списках, применимо и к наборам. Наборы отличаются от списков тем, как они накладывают ограничения на уникальность элементов. Они не допускают дублирования элементов или одинаковых элементов в наборе. Многим может показаться очевидным, что означает «то же самое», но Kotlin, как и Java, имеет особое значение для «одинаковости». Когда мы говорим, что два объекта одинаковы, это означает, что мы подвергли их тесту на структурную эквивалентность. И Java, и Kotlin определяют метод, называемый equals (), который позволяет нам определять отношения эквивалентности между объектами. Обычно это то, что мы подразумеваем под «сходством». В листинге 6-10 показаны некоторые основные операции с наборами.
Листинг 6-10. Основное использование наборов
val nums = mutableSetOf ("один", "два") ➊
nums.add («два») ➋
nums.add («два») ➌
nums.add ("три") ➍
println (nums) // выводит [один, два, три]
val numbers = (1..1000).toMutableSet() ➎
numbers.add(6)
numbers.removeIf { i -> i % 2 == 0 } ➏
println(numbers)

➊ Создает изменяемый набор и инициализирует его, передавая переменный аргумент функции-создателю.
➋ Этот код ничего не делает. Он не добавит «два» к набору, потому что элемент «два» уже есть в наборе.
➌ Независимо от того, сколько раз вы пытаетесь добавить «два», набор отклонит его, потому что он уже существует.
➍ Он, с другой стороны, будет добавлен, потому что «три» еще не существует в элементах.
➎ Создает изменяемый набор из диапазона. Это удобный способ создания набора (или списка) с множеством числовых элементов.
➏ Код демонстрирует, как использовать лямбда для удаления всех четных чисел в наборе.
Карты
В отличие от списков или наборов, карты не являются набором отдельных значений; скорее, они представляют собой набор пар значений. Думайте о карте как о словаре или телефонной книге. Его содержимое организовано с помощью пары ключ-значение. Каждому ключу на карте соответствует одно и только одно значение. В примере со словарем ключом будет термин, а его значением будет значение или определение термина.
Ключи на карте уникальны. Как и наборы, карты не допускают дублирования ключей. Однако значения в карте не подчиняются тем же ограничениям уникальности; две или более пары на карте могут иметь одно и то же значение. В листинге 6-11 показано базовое использование карт.
Листинг 6-11. Основные операции на карте
val dict = hashMapOf (от "foo" до 1) ➊
dict ["bar"] = 2 ➋
snapshot val: MutableMap <String, Int> = dict ➌
shot ["baz"] = 3 ➍
println (shot) ➎
println (dict) ➏
println (snapshot ["bar"]) // выводит 2 ➐

➊ dict изменяемая карта
➋ Добавляет на карту новый ключ и значение
➌ Назначает карту словаря новой переменной. Это не создает новую карту. Он только добавляет ссылку на объект к существующей карте.
➍ Добавляет на карту еще одну пару "ключ-значение".
➎ Печать {bar = 2, baz = 3, foo = 1}
➏ Также печатает {bar = 2, baz = 3, foo = 1}, потому что и snapshot, и dict указывают на одну и ту же карту.
➐ Получает значение из карты с помощью ключа
Теперь, когда мы увидели несколько примеров базового использования коллекций, вы, вероятно, заметили, что у них есть некоторые общие характеристики - возможно, не на 100%, как у карты, но список и набор во многом пересекаются. Одно хорошее в работе с каркасом коллекций - это единообразие или регулярность определенных операций по всей коллекции. Навыки и знания, которые мы получаем, работая со списками, например, хорошо переносятся или переносятся между наборами и картами. Поэтому рекомендуется ознакомиться с протоколом сбора данных. В Таблице 6-2 перечислены некоторые из наиболее распространенных операций с коллекциями.
Таблица 6-2. Общие операции с коллекциями
	Функции или свойства
	Описание

	Size
	Сообщает вам, сколько элементов находится в коллекции. Работает со списками, наборами и картами

	isEmpty ()
	Возвращает True, если коллекция пуста, и False, если нет. Работает со списками, наборами и картами.

	contains (arg)
	Возвращает True, если arg находится в коллекции. Работает со списками, наборами и картами

	add (arg)
	Добавить аргумент в коллекцию. Эта функция возвращает истину, если был добавлен аргумент - в случае списка всегда будет добавляться аргумент. В случае набора аргумент будет добавлен и вернет истину в первый раз, но, если тот же аргумент добавлен во второй раз, он вернет ложь. Эта функция-член не встречается на картах.

	remove (arg)
	Возвращает True, если arg был удален из коллекции, возвращает False, если коллекция не изменена.

	iterator ()
	Возвращает итератор по элементам объекта. Это было унаследовано от интерфейса Iterable. Работает со списками, наборами и картами.



Обход коллекций
К настоящему времени мы уже знаем, как работать с базовыми коллекциями. Мы знаем, как их создавать, а также добавлять и удалять из них элементы. Еще один навык, который нам понадобится для эффективной работы с коллекциями, - это возможность перебирать или перемещаться по ним. Для этого вернемся к рис. 6-1 и вспомним структуру наследования фреймворка коллекций.
На рисунке 6-1 вы заметите, что Collections наследует интерфейс Iterable. Итерация определяет то, что можно перебрать или перешагнуть. Когда класс наследует интерфейс Iterable, прямо или косвенно, это означает, что мы можем извлечь из него итератор и пройти по его элементам один за другим. И на каждом шаге мы также можем извлечь значение каждого элемента - это зависит от логики вашей программы, что вы хотите делать с этими значениями; вы можете преобразовать их, использовать их в арифметических операциях или, например, сохранить в хранилище.
Мы можем использовать множество способов пошагово перемещаться по элементам в коллекции. Мы можем использовать надежные циклы while и for, если хотите, но использование более современного forEach более идиоматично и немного модно. В листинге 6-12 показано, как перемещаться по списку с помощью циклов while и for.
Листинг 6-12. Использование циклов while и for для коллекций
val basket = listOf ("яблоко", "банан", "апельсин")
var iter = basket.iterator ()
while (iter.hasNext ()) {
 println (iter.next ())
}
for (i in basket) {
 println (i)
}

Листинг 6-12, вероятно, похож на то, как вы работали с коллекциями в Java, поэтому он должен выглядеть знакомо. В листинге 6-13 показаны эквивалентные коды при использовании функции forEach.
Листинг 6-13. Использование forEach
fruit.forEach {println (it)} ➊
nums.forEach {println (it)} ➋
// для карт
dict.forEach {println (it)} ➌
dict.forEach {t, u -> println ("$ t | $ u")} ➍

➊ Лямбда-выражение forEach имеет неявный параметр it. Параметр it - это значение текущего элемента. Это утверждение означает, что для каждого элемента в фруктах делать то, что находится внутри лямбда, которым в нашем случае является просто println ().
➋ То же самое работает для наборов
➌ То же самое и с картами
➍ Это вариант пункта 3 выше, но он позволяет нам работать с ключом и значением отдельно.
Фильтр и карта
Фильтр и отображение - это часть основных навыков, которые вам необходимо освоить для эффективной работы с коллекциями. Фильтрация позволяет нам выборочно работать с элементами коллекции. Это сужает поле. По сути, он возвращает подмножество исходной коллекции. С другой стороны, карта позволяет нам преобразовывать либо элементы, либо саму коллекцию.
Предположим, например, что у нас есть список чисел, а точнее целых чисел, например,
val ints = (1..100).toList ()
Переменная ints содержит список целых чисел от 1 до 100 с шагом 1.
Если бы мы хотели работать только с четными числами в этом списке, мы могли бы сделать это, 
(1) создав новый список; 
(2) перебор списка целых чисел и выполнение проверки по модулю на четные числа; а затем 
(3) если текущий обрабатываемый элемент является четным числом, мы добавляем его в новый список. 
Этот код может выглядеть как Листинг 6-14.
Листинг 6-14. Использование цикла for для отсеивания четных чисел
val evenInts2 = mutableListOf <Int> ()
for (i in ints) {
 if (i% 2 == 0) {
 evenInts2.add (i)
 }
}

Листинг 6-14 - это то, что можно назвать «императивным» способом фильтрации вещей. Ничего плохого в этом нет - это немного многословно, вот и все. Но он отлично читается даже тем, кто только начинает программировать. Однако в Kotlin более идиоматический способ сужения коллекций - использование функции фильтрации. Если бы мы сделали это с помощью фильтров, ему бы понравилось это
val evenInts = ints.filter {it% 2 == 0}
Я даже не добавляю на него ярлык «Листинг», потому что в нем нет необходимости - это всего лишь одна строка. Функция фильтрации является стандартной функцией библиотеки коллекций. Вы уже знаете, что выражение в фигурных скобках - это лямбда. Однако для фильтров более подходящим термином является лямбда-предикат. Лямбда-предикат также является функциональным литералом, но выражение внутри должно давать логическое значение.
Возвращаясь к нашему примеру, фильтр вызывается для коллекции - например, для списка целых чисел. Результатом работы фильтра является меньший список или подмножество. Список сокращается путем перебора каждого элемента и проверки их на соответствие условию, указанному в предикате лямбда. Любой элемент, прошедший проверку предиката, будет включен в результирующее подмножество.
Продолжим наш пример и поработаем с нашим меньшим списком четных целых чисел. Допустим, сейчас мы хотим возвести в квадрат каждый элемент в нашем списке четных целых чисел. Это требует от нас манипулировать и преобразовывать каждый элемент в списке, а затем возвращать новый список, содержащий преобразованные элементы. Если бы мы решили эту проблему с помощью цикла for, это выглядело бы, как в листинге 6-15.
Листинг 6-15. Создание списка элементов в квадрате с помощью цикла for
val squaredInts2 = mutableListOf <Int> ()
for (i in evenInts2) {
 squaredInts2.add (i * i)
}
println (squaredInts2)

Или мы могли бы решить эту проблему с помощью функции forEach в Коллекциях. Это выглядело бы как Листинг 6-16.
Листинг 6-16. Сгенерируйте список квадратов с помощью forEach
val squaredInts2 = mutableListOf <Int> ()
[bookmark: _GoBack]evenInts2.forEach {squaredInts2.add (it * it)}

На самом деле это выглядит намного лучше, но преобразование элементов в коллекции на самом деле является прерогативой функции карты. Итак, давайте решим задачу о квадрате целых чисел с помощью карт. В листинге 6-17 показан код.
Листинг 6-17. Использование функции карты
val squaredInts = evenInts.map {it * it}
println ("Сумма квадратов четных чисел <= 100 равна $ {squaredInts.sum ()}")

Единственный релевантный оператор в листинге 6-17 - это первый. Второй оператор просто выводит сумму всех четных чисел от 1 до 100. Кроме того, вторая строка демонстрирует еще одну встроенную функцию в структуре коллекций, функцию sum ().
Совершенно очевидно, что он делает - суммирует значения в коллекции.



Краткое содержание главы
· При работе с группой значений мы можем использовать либо массивы, либо коллекции. Используйте массивы для простых структур данных, но, когда вам нужно динамически изменять размер вашей группы данных или вам нужно добавить больше ограничения на него, такие как ограничение уникальности, вам могут лучше подойти Collections.
· Массивы в Kotlin не похожи на массивы в Java; они не пользуются особым обращением. В Котлине массивы - это просто классы.
· Kotlin предоставляет специализированные классы для массивов, если вы чувствуете, что вам нужно работать с массивами без накладных расходов на упаковку и распаковку.
· Коллекции Kotlin очень похожи на коллекции Java, но каждый из классов коллекции Java представлен двумя способами: изменяемым и неизменяемым.
· Коллекции Kotlin имеют встроенные функции, такие как фильтр, карта и сумма, что немного упрощает работу с коллекциями.
В следующей главе мы рассмотрим, как Kotlin работает с Generics.
image1.emf

